Boundary Integral Equations for the Transmission Eigenvalue Problem for Maxwell’s Equations

نویسندگان

  • FIORALBA CAKONI
  • HOUSSEM HADDAR
  • SHIXU MENG
  • Giovanni Monegato
  • S. MENG
چکیده

In this paper, we consider the transmission eigenvalue problem for Maxwell’s equations corresponding to non-magnetic inhomogeneities with contrast in electric permittivity that changes sign inside its support. We formulate the transmission eigenvalue problem as an equivalent homogeneous system of the boundary integral equation and, assuming that the contrast is constant near the boundary of the support of the inhomogeneity, we prove that the operator associated with this system is Fredholm of index zero and depends analytically on the wave number. Then we show the existence of wave numbers that are not transmission eigenvalues which by an application of the analytic Fredholm theory implies that the set of transmission eigenvalues is discrete with positive infinity as the only accumulation point.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

N‎umerical ‎q‎uasilinearization scheme ‎for the integral equation form of the Blasius equation

‎The ‎method ‎of ‎quasilinearization ‎is ‎an ‎effective ‎tool ‎to ‎solve nonlinear ‎equations ‎when ‎some ‎conditions‎ on ‎the ‎nonlinear term ‎of ‎the ‎problem ‎are ‎satisfi‎‎ed. ‎W‎hen ‎the ‎conditions ‎hold, ‎applying ‎this ‎techniqu‎e ‎gives ‎two ‎sequences of ‎coupled ‎linear ‎equations‎ and ‎the ‎solutions ‎of ‎th‎ese ‎linear ‎equations ‎are quadratically ‎convergent ‎to ‎the ‎solution ‎o...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015